’ s repository of research publications and other research outputs Distributions that are both log - symmetric and R - symmetric
نویسنده
چکیده
Two concepts of symmetry for the distributions of positive random variables Y are log-symmetry (symmetry of the distribution of log Y ) and Rsymmetry (Mudholkar & Wang, 2007). In this paper, we characterise the distributions that have both properties, which we call doubly symmetric. It turns out that doubly symmetric distributions constitute a subset of those distributions that are moment-equivalent to the lognormal distribution. They include the lognormal, some members of the Berg/Askey class of distributions, and a number of others for which we give an explicit construction (based on work of A.J. Pakes) and note some properties; Stieltjes classes, however, are not doubly symmetric.
منابع مشابه
research outputs Distributions that are both log - symmetric and R - symmetric
Two concepts of symmetry for the distributions of positive random variables Y are log-symmetry (symmetry of the distribution of log Y ) and Rsymmetry (Mudholkar & Wang, 2007). In this paper, we characterise the distributions that have both properties, which we call doubly symmetric. It turns out that doubly symmetric distributions constitute a subset of those distributions that are moment-equiv...
متن کاملoutputs Distributions that are both log - symmetric and R - symmetric
Two concepts of symmetry for the distributions of positive random variables Y are log-symmetry (symmetry of the distribution of log Y ) and Rsymmetry (Mudholkar & Wang, 2007). In this paper, we characterise the distributions that have both properties, which we call doubly symmetric. It turns out that doubly symmetric distributions constitute a subset of those distributions that are moment-equiv...
متن کاملThe (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملAutomorphism Group of a Possible 2-(121, 16, 2) Symmetric Design
Let D be a symmetric 2-(121, 16, 2) design with the automorphism group of Aut(D). In this paper the order of automorphism of prime order of Aut(D) is studied, and some results are obtained about the number of fixed points of these automorphisms. Also we will show that |Aut(D)|=2p 3q 5r 7s 11t 13u, where p, q, r, s, t and u are non-negative integers such that r, s, t, u ? 1. In addition we prese...
متن کاملSecond symmetric powers of chain complexes
We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016